
Multi-Rate Multi-Range Dynamic Simulation for Haptic Interaction
Ikumi Susa∗ Makoto Sato† Shoichi Hasegawa†

Tokyo Institute of Technology

ABSTRACT

In this paper, we propose a technique for a high quality haptic dis-
play working with a low update rate rigid body dynamics simula-
tor. The proposed method uses two dynamics simulators. One has a
low update rate for the whole virtual world and the other has a high
update rate for the neighboring objects of the haptic pointer. In ad-
dition, the method calculates accelerance matrices of neighboring
objects with regard to the contact forces added to these objects. We
carried out a simulation and an experiment to check the effective-
ness of the proposed method.

Index Terms: I.2.9 [ARTIFICIAL INTELLIGENCE]:
Robotics—Kinematics and dynamics I.3.5 [COMPUTER
GRAPHICS]: Computational Geometry and Object Modeling—
Physically based modeling I.3.7 [COMPUTER GRAPHICS]:
Three-Dimensional Graphics and Realism—Virtual reality I.6.8
[SIMULATION AND MODELING]: Types of Simulation—
Parallel;

1 INTRODUCTION

Haptic interaction systems are one way of interacting with vir-
tual worlds. Furthermore, systems combining haptic interfaces and
physics simulators enable dexterous manipulation of virtual objects
as in the real world. Therefore, it is expected that such systems
could be applied to designing, training and entertainment.

Previous studies show us methods of creating haptic interaction
systems. Most haptic interfaces have to be controlled at over 1 kHz
for stability and display stiffness [9]. Generally, for haptic render-
ing, some sort of distance (penalty depth, coupling distance [4],
etc.) is needed. The distance is calculated between the pose of
the haptic interface and the pose of the haptic pointer (rigid body,
god-object [15], proxy [14]). Therefore, when interacting with dy-
namic virtual worlds, physics simulators have to be updated at the
same update rate of the haptic interfaces. However, because of lim-
itations in computational resources, it is difficult to update haptic
interfaces and physics simulators at the same high update rate.

We propose a system having multi-rate multi-range dynamic
simulations to realize stable and stiff haptic display for dynamic
virtual worlds filled with rigid bodies. The proposed system works
at a computational cost of low update rate dynamics simulators and
eliminates artifacts of delay caused by synchronization.

2 RELATED WORK

For the above problems, there are many studies [10] [7] which ex-
tend an intermediate representation [2]. The Intermediate repre-
sentation proposed by Adachi et al. [2] enables interaction with
a static virtual world with the processing of the haptic interaction
system divided into the collision detection thread and the haptic
rendering thread. Each thread is executed at a different update rate
and synchronized at their slowest update rate. Hasegawa et al. [7]

∗e-mail: susa@hi.pi.titech.ac.jp
†e-mail: (msato, hase)@pi.titech.ac.jp

use an impulse rendered in a haptic thread to update movement of
rigid bodies managed in a physics thread. An impulse makes the
updating movement of rigid bodies stable.

In addition, other methods for multi-rate systems are proposed.
One uses the virtual coupling [4] to connect a haptic interface and
a haptic pointer as a rigid body [3][13]. Akahane et al. [3] imple-
mented the haptic display of a 10 kHz update by interpolating and
up-converting the force which was generated by the virtual cou-
pling. They achieved a stiff, high resolution haptic display. Otaduy
et al. [13] divided the haptic rendering thread into the haptic thread
(high update rate) and the contact thread (low update rate). The
haptic thread then calculates the coupling force and simulates the
dynamics of the haptic pointer to realize a stable haptic display with
a low mass value for the haptic pointer.

Another method, which uses the constraint-based coupling
based on the god-object method [15], is proposed by Ortega et
al. [12]. They introduce unconstrained and constrained acceleration
of a haptic pointer to calculate the feedback force. Although the vir-
tual coupling allows artificial friction or sticking, the constrained-
based coupling does not allow this.

These methods enable us to interact with dynamic virtual worlds
filled with large numbers of rigid bodies or polygons. However,
these methods break the consistency of the time series between the
user and the virtual world because different update rates for the
threads delay communication. For example, when a user pushes a
rigid body on a table via a haptic interface, a haptic thread renders
a feedback force. However, the rigid body managed by a physics
thread does not start moving until the next update of the physics
thread. After the update, the user begins to perceive the movement
of the rigid body. This delay makes the user feel a rigid body that
is heavier than the configuration value of the mass and inertia of
the rigid body. Therefore, these methods display the feedback force
with an error caused by the delay.

For this problem, Glondu et al. [6] proposed the haptic sub-
world using a contact graph. It allows a simulation of selected rigid
bodies with high update rate and enables to render feedback force
without artifacts produced by interpolation. However, the haptic
sub-world is limited and it is difficult to include all rigid bodies
which are in contact with each other. Although some methods for
deformable objects with multi-rate approach have been proposed
[11], these are not suitable for rigid bodies.

3 OVERVIEW OF THE PROPOSED METHOD

If the physics thread update rate is in the order of the haptic
thread rate (1 kHz-), the problem of delay is solved. However,
the physics simulator cannot complete the calculation for the whole
virtual world in such a short period. Reflecting the user’s input to
the physics simulation without waiting for synchronization of the
threads, we propose a method that simulates part of a virtual world
with the update rate of the haptic thread like [6] Simulating part
of the virtual world enables the user to reflect the physics simula-
tion without synchronizing threads. This multi-threaded simulation
realizes similar force feedback as well as single one. This method
uses penalty based haptic rendering, so that the positions of the hap-
tic pointers and the haptic interfaces are the same. Furthermore, the
method is currently available for a rigid body dynamics simulator
with convex collision and a 3-DoF haptic display.

233

IEEE World Haptics Conference 2011
21-24 June, Istanbul, Turkey
978-1-4577-0297-6/11/$26.00 ©2011 IEEE

(b) N object items near
the haptic pointer

(a) Objects neighboring
the haptic pointer

haptic pointer
neighboring objects

Figure 1: Range for applying local dynamics simulation

3.1 Range of the Local Dynamics Simulation
A dynamics simulation which is run in a haptic thread covers a
part of the virtual world regarding the limitation of computational
resources. Let us consider the range of local dynamics;

• Rigid bodies which are going to be in contact with a
haptic pointer (Figure 1.(a)). We call these the objects
neighboring the haptic pointer.

• The range from the haptic pointer to the N th rigid body.
(Figure 1.(b)).

However, these ranges cause some problems. For example, in Fig-
ure 1.(a), objects neighboring the haptic pointer are simulated by
the local dynamics simulator running in the haptic thread. Thus, it
ignores the contact forces generated between neighboring objects
and objects which are simulated by the global dynamics simulator
in the physics thread. Because contact forces are not considered,
neighboring objects will fall down due to gravity. Furthermore, in
Figure 1.(b), the local dynamics simulator handles N rigid body
items. However, when more rigid bodies come into contact with
these N rigid bodies, the local dynamics simulator cannot calculate
the feedback forces associated with this increase in rigid bodies.
Even if this limitation is removed, the computation volume will re-
strict real time processing.

Therefore, we adopt the method of using neighboring objects for
the haptic pointer (Figure 1.(a)) as the range for the local dynam-
ics simulation. To consider the contact forces generated between
neighboring objects and others, we introduce the accelerances of
neighboring objects. The accelerance is a matrix which transforms
force to acceleration. After the global dynamics simulation, the

physics thread calculates the accelerance of the neighboring objects
by carrying out another dynamics simulation (we call it a testing
simulation) which simulates a further step in the global dynamics
simulation. Finally, we send the accelerances of the neighboring
objects to the haptic thread and simulate the movement of neighbor-
ing objects based on the accelerances and forces rendered by haptic
rendering. This method considers all the contact forces which are
added to neighboring objects and achieves the correct force feed-
back.

3.2 Architecture of the Proposed System
In this section, we describe the architecture of the proposed system
(Figure 2).

• Physics thread
1. Global dynamics simulation

Update the state of all rigid bodies.
2. Find the neighboring objects of the haptic pointer

(Section 4.1)
3. Calculate the accelerances of the neighboring ob-

jects (Section 4.2 and 4.3)
Run the testing simulation and calculate the acceler-
ances of the neighboring objects from the differential
of velocities.

4. Synchronize with the local dynamics simulation
(Section 6.1)

• Haptic thread
a. Update the states of the haptic pointer
b. Haptic rendering (Section 5.1)
c. Local Dynamics Simulation (Section 5.2)

Update the states of the neighboring objects of the
haptic pointer based on the rendered forces and ac-
celerances.

d. Run a.-c. while the physics thread ends its step
e. Synchronize with the global dynamics simulation

(Section 6.2)
Reflect the nonlinear forces (which are added to the
neighboring objects) to the local dynamics simulation.

The timing of the synchronization is linked to each end of the
physics thread’s steps. For example, let us assume that the update
rate of the haptic thread is n times as fast as the physics thread. The
synchronization is executed after n haptic thread steps in parallel

b. Haptic rendering
c. Local dynamics
simulation
(with nonlinear force)

Haptic Thread (high update rate) Haptic InterfacePhysics Thread (low update rate)

haptic pointer

2. Find the
neighboring
objects of the
haptic pointer

4. Synchronize with the local dynamics
simulation
・intermediate representations

e. Synchronize with the global dynamics
simulation
・poses and velocities
of the neighboring objects

3. Calculate the accelerances
of the neighboring objects

1.Global dynamics simulationstep i step j(=0)

b. Haptic rendering
c. Local dynamics
simulation

a. Update the state of
the haptic pointer

a. Update the state of
the haptic pointer

4 perturbation
force

step j(=n-1)

s, u

force fd

pseudo-step
i+1

intermediate representation
(contact points, normal on a object)

force fd

・intermediate representations
・accelerances of the neighboring objects
・nonlinear forces

of the neighboring objects
・forces between haptic pointer
and neighboring objectsA, bfn

s, u
fo(i, n-1)

Figure 2: Architecture of proposed system

234

with a single physics thread step.

3.3 Notational Convention

We define characters that are used in the physics and haptic threads
as follows.

G: index that represents the notation in the physics thread
L: index that represents the notation in the haptic thread
i: step count of the physics thread

i, j: step count of the haptic thread. While the physics
thread runs the i th step, the j th step of the haptic
thread is run. (0 ≤ j < n. After synchronizing with
the physics thread, we let j = 0.)

For instance, in the case that the physics thread runs the global dy-
namics simulation and updates a pose sssG

(i−1) of a rigid body at the

(i)th step, the pose will be sssG
(i). In addition, if the haptic thread

runs the local dynamics simulation and updates the pose sssL
(i, j−1) of

a neighboring object at the (i, j)th step, it will be sssL
(i, j). In the next

section, we describe in detail the processing of the threads.

4 PROCESSING OF THE PHYSICS THREAD

As we described in Section 2.2, we note that the contact forces
added by the other objects are necessary for simulating neighboring
objects correctly. To take account of the contact forces, we intro-
duce the analogy of accelerance. The accelerance is a matrix that
transforms force to acceleration. We calculate the accelerances of
each neighboring object. The accelerances of neighboring objects
are calculated in the physics thread and sent to the haptic thread. To
obtain the accelerances, we run a testing simulation after the global
dynamics simulation in the physics thread by adding the perturba-
tion force assumed from the feedback force. The testing simulation
temporarily forwards a step of the global dynamics simulation for
calculating the derivation of the current and the next velocities of
the neighboring objects. The accelerances are then calculated from
the perturbation forces and the derivation of velocities. In this sec-
tion, we describe an algorithm for calculating the accelerances of
the neighboring objects.

4.1 Finding the Neighboring Objects of
the Haptic Pointer

The proposed method can use any collision detection algorithms
which achieve information on nearest points and normals on the
neighboring objects; e.g. GJK algorithm [5]. We put the informa-
tion into intermediate representations [2] for haptic rendering (Sec-
tion 5.1) and send them to the haptic thread at the synchronization
term. The purpose of the above approach is to simplify the geomet-
ric model for haptic rendering and restrain the amount of data of
convex shapes.

4.2 Accelerances of the Neighboring Objects

Because of the interposition of a user, the force fff o, which is added
to the neighboring objects of a haptic pointer, is not clear. Con-
sequently, we consider the relationship between movement of the
neighboring objects and the force fff o. If the relationship is repre-
sented as a linear model, the movement of a neighboring object will
be formulated as

MMMu̇uu+BBBuuu+KKK
∫

uuudt + fff e =
(

fff o
rrr× fff o

)
= JJJh fff o. (1)

Where

MMM,BBB,KKK(∈ R6×6): mechanical impedance matrix
uuu(∈ R6): velocity and angular velocity of a neighboring

object
fff o(∈ R3): force added by the haptic pointer
fff e(∈ R6): external force except the force fff o
rrr(∈ R3): point of application of the force fff o

JJJh(∈ R6×3): matrix that transforms fff o into force and torque.
In this formula, uuu and

∫
uuudt are not varied even if fff o changes.

Thus, putting these constants together we transform (1) as

u̇uu = MMM−1JJJh fff o −MMM−1(BBBuuu+KKK
∫

uuudt + fff e)

= AAA fff o +bbb. (2)

Where AAA(∈R6×3) is the accelerance of a neighboring object, which
features mass and inertia, and bbb is the acceleration term derived
from an external force such as gravity. In addition, bbb is not varied
by the force added by the haptic pointer.

While a neighboring object is in contact with the other objects,
connected with links or spring-dampers, the assumption of a linear
model is valid as long as the situation continues. Though the cases
that are transitions of the friction states or changes in the number
of contacts, are not valid linear models, these cases occur only in
the global dynamics simulation. Therefore it is difficult to take into
account nonlinear changes in the local dynamics simulation.

Consequently, to maintain consistency between the global dy-
namics simulation and the local dynamics simulation, the global
dynamics simulation calculates the nonlinear forces. The nonlinear
forces are then sent to the haptic thread and reflected to the local
dynamics simulation. This technique is described in Section 6.2.

4.3 Calculation of the Accelerance
To calculate the accelerance AAA and the acceleration term bbb of equa-
tion (2), the physics thread runs the testing simulation 4 times. The
testing simulation forwards a single step to the global dynamics
simulation. The reason that we selected 4 times of testing simula-
tion is one for determining the acceleration term bbb and three for the
accelerance AAA which is determined by 3 linear independent forces.

Let us show the calculation of the accelerance at the (i)th steps
of the physics thread. First, the physics thread runs the testing sim-
ulation with a perturbation force of fff G

p0 = (0 0 0)T and achieves
updated states of the rigid bodies on pseudo (i+1)th-step. The ve-
locity of the neighboring object uuuG

0(i+1) is then obtained. Here, we

denote ∆tG as a time step of the global dynamics simulation and
transform equation (2) to a difference equation:

uuuG
(i+1) = uuuG

(i) +
{

AAA(i+1) fff G
o(i+1) +bbb(i+1)

}
∆tG. (3)

Where uuuG
(i) and ∆tG are known, and substituting uuuG

0(i+1) and fff G
p0

for uuuG
(i+1) and fff G

o(i+1), the acceleration term bbb(i+1) is obtained. Sec-

ondly, we define 3 linear independent perturbation forces fff G
p1, fff G

p2

and fff G
p3 based on the norm of the force fff L

(i−1,n−1), which is added
by the haptic pointer at the (i−1, n−1)th step of the haptic thread,
as

fff G
p1 = (|| fff L

o(i−1,n−1)||,0,0)T

fff G
p2 = (0, || fff L

o(i−1,n−1)||,0)T

fff G
p3 = (0,0, || fff L

o(i−1,n−1)||)
T

. (4)

Then the physics thread runs the testing simulation with each of the
forces fff G

p1, fff G
p2 and fff G

p3 to obtain the next update velocity of the
neighboring object(uuuG

1(i+1) , uuuG
2(i+1) and uuuG

3(i+1)). The reason that

235

we use the force fff L
(i−1,n−1) for the perturbation force is to obtain

a more precise accelerance corresponding to current situation of
haptic interaction. Then the equation (3) is transformed as

AAA(i+1) fff G
p1 = (uuuG

1(i+1) −uuuG
(i))∆tG−1 −bbb(i+1) (≡ yyy1)

AAA(i+1) fff G
p2 = (uuuG

2(i+1) −uuuG
(i))∆tG−1 −bbb(i+1) (≡ yyy2)

AAA(i+1) fff G
p3 = (uuuG

3(i+1) −uuuG
(i))∆tG−1 −bbb(i+1) (≡ yyy3)

. (5)

Then combining equation (5) together and multiplying both sides
of the equation by [fff G

p1 fff G
p2 fff G

p3]
−1 to determine the accelerance AAA:

AAA(i+1) =
[

yyy1 yyy2 yyy3
][

fff G
p1 fff G

p2 fff G
p3

]−1
. (6)

Finally, the physics thread sends the accelerance AAA and the accel-
eration term bbb to the (i + 1,0)th step of the haptic thread and uses
them in the local dynamics simulation (Section 5.2) until j = n−1.

5 PROCESSING OF THE HAPTIC THREAD

5.1 Haptic Rendering
To obtain the feedback force, we use a spring-damper model based
on the depth of a haptic pointer, which penetrates the neighboring
object represented as the intermediate representation[2]. For haptic
rendering, we define the notations below.

k, d: coefficient of the spring and damper.
xxxp, ẋxxp: position and velocity of a haptic pointer.

xxxL
o : position of a contact point on a neighboring object

which corresponds to a haptic pointer.
ẋxxL

o : velocity of a contact point on a neighboring object.
Then the feedback force fff d is represented by

fff d = k(xxxL
o − xxxp)+d(ẋxxL

o − ẋxxp). (7)

In addition, following Newton’s third law, the force fff L
o , which is

added to the neighboring object, is given by fff L
o = − fff d .

5.2 Local Dynamics Simulation
The local dynamics simulation in the haptic thread simulates the
movements of the neighboring objects. To simulate the movement
of the neighboring object, we use the force fff L

o , the accelerance AAA
and the acceleration term bbb, which are described in Section 4.2, 4.3
and 5.1. Then the movement of the neighboring object is expressed
as

u̇uuL = AAA fff L
o +bbb. (8)

For instance, the velocity and angular velocity of the neighboring
object uuuL

(i, j), which are updated at the (i, j)th step of the haptic
thread, are represented as the difference equation with the time step
of local dynamics simulation ∆tL:

uuuL
(i, j) = uuuL

(i, j−1) +
{

AAA(i) fff L
o(i, j) +bbb(i)

}
∆tL. (9)

Moreover, the updated pose of the neighboring object is given by

sssL
(i, j) = sssL

(i, j−1) +SSSuuuL
(i, j)∆tL. (10)

Here, sss represents the position xxx, which is a rectangular coordinate,
and the orientation qqq = (qw qx qy qz)T which is a quaternion, as sss =
(xxx qqq)T . SSS(∈ R7×6) is a matrix that transforms the angular velocity
to a quaternion:

SSS =
(

EEE 0
0 QQQ

)
,QQQ =

1
2

 −qx −qy −qz
qw −qz qy
qz qw −qx
−qy qx qw

 . (11)

Where EEE(∈ R3×3) is a unit matrix.
Finally, the haptic thread is executed n times with the above pro-

cesses. The haptic thread then sends poses and velocities of the
neighboring objects and the rendered force fff L

o(i,n−1), which are for
the testing simulation, to the (i+1)th step of the physics thread.

6 SYNCHRONIZATION BETWEEN THE GLOBAL AND LOCAL
DYNAMICS SIMULATION

6.1 Reflecting the Results of the Local Dynamics
Simulation to the Global Dynamics Simulation

The reflection is to replace the pose and velocity of neighboring
objects, which are simulated by the global dynamics simulation,
with neighboring objects, which are simulated by the local dynam-
ics simulation. To reflect the results of the local dynamics simu-
lation, the synchronization overwrites the velocities and poses of
neighboring objects in the global dynamics simulation by the re-
sults of the local dynamics simulation.

For example, the reflection from the local dynamics simulation
at the (i,n− 1)th step of the haptic thread to the global dynamics
simulation on the (i)th step of the physics thread, results in the re-
placements

uuuG
(i) = uuuL

(i,n−1), (12)

sssG
(i) = sssL

(i,n−1). (13)

Because the different update rate between the physics and the haptic
thread makes different accuracy between global and local dynamics
simulation, these replacements cause discontinuities in global dy-
namics simulation and visual display such as penetrations between
neighboring objects and other objects. However, such penetrations
are little and can be solved in global dynamics simulation gradually.

6.2 Reflecting the Nonlinear force to
the Local Dynamics Simulation

The local dynamics simulation can determine the contact forces be-
tween the neighboring objects and other objects from accelerances
AAA in equation (8). On the other hand, it cannot determine nonlin-
ear forces such as impulsive and friction forces caused by contact
and friction state changes. Without these forces, results of the lo-
cal dynamics simulation replace some states of the global dynamics
simulation such as Section 6.1, the neighboring objects will pene-
trate the other objects and the user cannot feel the impulsive forces
which are added to the neighboring objects.

Therefore, to establish consistency between the global and lo-
cal dynamics simulations, we calculate the nonlinear force fff G

n in
the global dynamics simulation and reflect it in the local dynamics
simulation at the first step of the haptic thread after synchronization.
For example, when the nonlinear force fff G

n(i) is added to a neighbor-
ing object in the global dynamics simulation at the (i)th step of the
physics thread, our method reflects fff G

n(i) to the local dynamics sim-
ulation at the (i+1,0)th step of the haptic thread:

uuuL
(i+1,0) = uuuL

(i,n−1) +
{

AAA(i+1) fff L
o(i+1,0) +bbb(i+1)

}
∆tL

+MMM−1JJJG
n(i) fff G

n(i)∆tG. (14)

Where M−1(∈ R6×6) is an inverse mass-inertia matrix and JG
n (∈

R6×3) is a matrix which transforms the force fff G
n to a vector of

force and torque. The first and second terms on the right side of
equation (14) correspond to equation (9). We then add the nonlin-
ear force fff G

n(i) as the third term, to the right side of equation (14).
This procedure establishes consistency between the global dynam-
ics simulation and the local dynamics simulation.

236

7 EVALUATION OF THE PROPOSED METHOD

To check the effectiveness of the proposed method, we did two eval-
uations. One is a haptic rendering with a computer simulation to see
amount of rendered force. The other is measuring the computation
time of the simulation.

7.1 Experimental System

The implemented system consists of an Intel(R) Core(TM)2 Duo
CPU 2.33 GHz processor PC with Microsoft Windows Xp x86, a
haptic interface SPIDAR-G6 [8] and a physics simulator Spring-
head2 [1] based on analytical method. In addition, we implemented
3 methods of haptic rendering. Method 1 updates simulation with
high cycle (physics thread 1 ms, haptic thread 1 ms). Method 2
is proposed one which uses local dynamics simulation (physics
thread 50 ms, haptic thread 1 ms). Method 3 is conventional one
which uses impulse communication [7] (physics thread 50 ms, hap-
tic thread 1 ms). The time steps of the simulation are the same as
the cycle of the thread.

haptic
pointer

cube:
move in a translational direction

Figure 3: The virtual world
for simulation

haptic
pointer

virtual cubes

neighboring
object

Figure 4: Measuring computation
times of simulations

7.2 Evaluation of the Haptic Rendering

This Evaluation compares the feedback forces from the 3 methods
and checks the effectiveness of the proposed method. To check
effectiveness, we ran a computer simulation.

7.2.1 Contents of the Simulation

The contents of the simulation are given by a virtual cube moving
in a translational direction and this collides with a haptic pointer
(Figure 3). While the virtual cube and the haptic pointer collide
and rebound, the forces which are added to the virtual cube are
recorded. To avoid unnecessary influences on the haptic renderings,
the virtual cube is moved in one direction without rotating or the
influence of gravity. In addition, the haptic pointer is fixed and does
not move. We performed the above simulation using 3 methods
with a virtual cube of mass 60 kg and velocity 0.017 m/s.

7.2.2 Results of the simulation

Figure 5 shows the results of the simulation. Comparing the above
3 methods, Method 3 (using impulse communication) resulted in a
longer contact time and a larger force. On the other hand, Method 1
(updated simulation with a high cycle) and Method 2 (using the lo-
cal dynamics simulation) followed the same trajectory. In addition,
Methods 1 and 2 had the same impulse value. This shows that the
problem caused by the delay is solved in Method 2.

7.3 Evaluation of the Computation Time

The proposed method contains the testing simulation in addition
to the global dynamics simulation. Therefore, we measured the
computation time of the simulations and compared them with other
methods.

for
ce

ad
de
d b

y h
ap
tic
 po

int
er

[N
]

elapsed time after collision [s]

Method 3

Method 1 Method 2

impulse
Method 1: 2.0Ns
Method 2: 2.0Ns
Method 3: 3.2Ns

0.00 0.10 0.20 0.30 0.40 0.50
0

2

4

6

8

10

12

Figure 5: Results of the simulation

7.3.1 Contents of the Experiment
We measured the computation time for each single step of the simu-
lation, while pushing the virtual cubes with the haptic pointer (Fig-
ure 4). We used a CPU clock to measure the computation time.
To observe changes in the computation time on number of virtual
cubes and collisions, we measured two situations for each of the
three methods. The first pushes a single virtual cube and the second
pushes 10 virtual cubes. When pushing 10 virtual cubes, the cubes
are not in contact with each other in the initial condition. The cubes
progressively come in contact with each other once pushed by the
haptic pointer.

7.3.2 Results of The Experiment
Figure 6 and 7 shows the results of the experiment. The vertical
axes of the graphs are computation duty factors. The computation
duty factor is determined by dividing the measured computation
time for a single step by the period of a simulation step. A compu-
tation duty factor beyond 1 means a simulation was not complete
within a simulation time step.

Referring to the Figure 6 and 7.(a), the computation duty factor
of each approach increased as the number of virtual cubes increases.
Referring to Method 1, when the number of virtual cubes is 1, the
computation duty factor is below 0.15, but when the number of vir-
tual cubes is 10, the computation duty factor goes beyond 1 and
Method 1 could not complete the calculation within 1 ms. The com-
putation took 3 times the time step of Method 1. The force feedback
was in fact unstable in Method 1 when there were 10 virtual cubes.
On the other hand, with the other methods, the computation duty
factors were less than 0.25 and the force feedbacks were steady.

Referring to the Figure 7.(b) which is the enlarged trajectory of
Methods 2 and 3, Method 2 has the global dynamics and testing
simulations. Comparing Method 2 (without testing simulation) and
Method 3, there are no noticeable differences. On the other hand,
the computation duty factor of Method 2 (including the testing sim-
ulation) was about 3-4 times as large as for Method 3. In fact,
Method 2 ran the testing simulation 4 times when calculating the
accelerances and acceleration terms of the neighboring objects. In
addition, because the collision detection phase was not included
in the testing simulation, the computing time of Method 2 did not
reach 5 times that for the global dynamics simulation. Thus, the
result for Method 2 is reasonable.

In conclusion, Method 2 is good at simulating the virtual world
on a large scale compared to Method 1 and calculates more precise
feedback forces compared to Method 3. Although our implementa-
tion of Method 2 could deal about 80 cubes, because of the compu-
tational resources of the local dynamics simulation, the force feed-
back was unstable when interact with 8 cubes at once. In addition,

237

0

0.025

0.05

0.075

0.1

0.125

0.15

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

co
mp

uta
tio

n d
uty

 fa
cto

r

Method 1 (1ms)

Method 3 (50ms)
Method 2 (50ms)
(including the testing
simulation)

elapsed time of the simulation [s]

Figure 6: Result of measuring computation time with 1 virtual cube

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.05

0.1

0.15

0.2

0.25

co
mp

uta
tio

n d
uty

 fa
cto

r

elapsed time of the simulation [s]

Method 1 (1ms)

Method 2 (50ms)
(including the testing
simulation)Method 3 (50ms)

Method 3 (50ms)

Method 2 (50ms)
(including the testing
simulation)

co
mp

uta
tio

n d
uty

 fa
cto

r

(a) trajectory of Method 1-3

0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

elapsed time of the simulation [s]

Method 2 (50ms)
(without the testing simulation)

(b) enlarged trajectory of Method 1,2

Figure 7: Result of measuring computation time with 10 virtual cubes

we confirmed our method realized stable dynamic haptic interac-
tion with a virtual world filled with rigid bodies of various shapes
and joints (Figure 8).

8 CONCLUSIONS

In this paper, we propose a multi-rate haptic interaction system us-
ing local dynamics simulation. To establish consistency between
global dynamics simulation and local dynamics simulation, we pro-
posed calculating the accelerances of objects which are near the
haptic pointer and use it as a local dynamics simulation. Then we

Figure 8: Haptic interaction with a light stand and dices

evaluated the effectiveness of proposed method with a simulation
and an experiment.

Our method has several directions for future work. We would
like to extend our method to 6-DoF haptic display for grasp ma-
nipulation and displaying friction force. Finally, though it might
be difficult, we would like to examine our method applying to de-
formable objects.

REFERENCES

[1] Springhead2. http://springhead.info/wiki/.
[2] Y. Adachi, T. Kumano, and K. Ogino. Intermediate representation for

stiff virtual objects. Virtual Reality Annual International Symposium,
pages 203–210, March 1995.

[3] K. Akahane, S. Hasegawa, Y. Koike, and M. Sato. A proposal of a
high definition haptic rendering for stability and fidelity. ICAT2006,
pages 162–167, November 2006.

[4] J. E. Colgate, M. C. Stanley, and J. Michael. Issues in the haptic
display of tool use. IEEE/RSJ International Conference on Intelligent,
pages 140–145, 1995.

[5] E.Gilbert, D. Johnson, and S. S. Keerthi. A fast procedure for comput-
ing the distance between complex objects in threedimensional space.
IEEE Journal of Robotics and Automation, 4(2):193–203, 1988.

[6] L. Glondu, M. Marchal, and G. Dumont. A new coupling scheme
for haptic rendering of rigid bodies interactions based on a haptic
sub-world using a contact graph. Proceedings of Sixth Eurograph-
ics Workshop in Virtual Reality, Interaction and Physical Simulations,
6191:51–56, 2010.

[7] S. Hasegawa, M. Ishii, Y. Koike, and M. Sato. Inter-process communi-
cation for force display of dynamic virtual world. Proc. of the ASME-
Dynamic Systems and Control Division-1999, 67:211–218, 1999.

[8] S. Kim, J. Berkley, and M. Sato. A novel seven degree of freedom
haptic device for engineering design. VIRTUAL REALITY, 6(4):217–
228, 2003.

[9] L. Love and W. Book. Contact stability analysis of virtual walls.
Proc. Of Dynamic Systems and Control Division ASM, pages 689–
694, 1995.

[10] W. R. Mark, S. C. Randolph, M. Finch, J. M. V. Verth, and R. M.
TaylorII. Adding force feedback to graphics systems: Issues and solu-
tions. Proc. of the 23rd annual conference on Computer graphics and
interactive techniques, pages 447–452, 1996.

[11] C. A. Mendoza and C. Laugier. Realistic haptic rendering for highly
deformable virtual objects. IEEE Virtual Reality Conference 2001,
page 264, 2001.

[12] M. Ortega, S. Redon, and S. Coquillart. A six degree-of-freedom god-
object method for haptic display of rigid-bodies. Proc. of IEEE Virtual
Reality Conf., 2006.

[13] M. A. Otaduy and M. C. Lin. A modular haptic rendering algorithm
for stable and transparent 6-dof manipulation. IEEE Transactions on
Robotics, 22(4):751–762, August 2006.

[14] D. Ruspini, K. Kolarov, and O. Khatib. The haptic display of complex
graphical environments. SIGGRAPH 97 Proceedings, 1997.

[15] C. B. Zilles and J. K. Salisbury. A constraint-based god object
method for haptics display. Proc. of IEEE/RSJ Int. Conf. on Intelli-
gent Robotics and Systems, 1995.

238

