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概要: VRでのリアルなインタラクションが重要となり、柔軟物の実時間でのリアルな変形シミュレー
ションが求められている。従来のCorotated FEMを改良した Local Volume Based Corotated FEMを
提案し、リアルタイムでの柔軟変形シミュレーションの高速化を提案する。この方法は、モデルをグルー
プに分割し、ローカル座標を用い、計算効率を向上させます。また、Position Based Dynamics (PBD)

と制約条件を統合し、隣接グループを統合します。
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1. Introduction

In Virtual Reality (VR), achieving rapid and accurate

interactions is paramount for an enhanced user experi-

ence. With the evolution of the Metaverse, the ultimate

goal is to establish a virtual world that closely mimics

reality, making the realism of interactions and physical

effects especially crucial. Haptic feedback, a vital com-

ponent of immersive VR experiences, hinges on the pre-

cise and quick deformation of virtual objects. In the real

world, object deformations are categorized into rigid and

soft body deformations. For rigid bodies, linear models

are typically employed due to their simplicity and compu-

tational efficiency. However, most real-world objects un-

dergo deformations that are too complex to be accurately

described by rigid body transformations alone, necessi-

tating the use of nonlinear models. Although more ac-

curate, nonlinear models are computationally intensive,

posing challenges to both computational speed and ac-

curacy.

Finite Element Method (FEM) is a numerical tech-

nique widely used across engineering to solve various prob-

lems by subdividing objects into a finite number of ele-

ments. When an object is divided into an excessively

large number of elements, the computational cost esca-

lates, particularly for soft bodies where a physical-based

FEM requires the construction of massive matrices at ev-

ery timestep for equation solving. To address this, the

corotated FEM approach was proposed, which involves

rotating the object to an unrotated coordinate system,

stretching or compressing it, and then rotating it back.

This method allows the stiffness matrix K to remain un-

changed at each step, thereby speeding up computations.

While most research on accelerating corotated FEM fo-

cuses on extracting rotation matrices more quickly and

stably, few have explored acceleration through matrix

computation. This study proposes dividing the object’s

elements into groups, each calculated in its local coordi-

nate system, effectively reducing the overall matrix size

and accelerating the corotated FEM method.

After dividing the object into several groups, a method

is needed to integrate adjacent groups to maintain the ob-

ject’s integrity. We introduce a position-based constraint

that ensures common points between neighboring groups

occupy the same location. This constraint is translated

into a constraint force that allows for a more natural con-

nection between groups by iterative calculations. Unlike

other external forces, such as gravity, this constraint force

is calculated separately, acting as a deformation correc-

tion. This method, commonly referred to as the Position

Based Method, directly controls positions. It can accom-

modate arbitrary position constraints and model a wide

range of physical phenomena in a visually plausible man-

ner due to its robustness and efficiency.

In summary, our method combines the advantages of

corotated FEM and Position Based Dynamics by calcu-

lating the body in groups and ultimately merging them



with PBD. Preliminary results indicate a significant im-

provement in speed while maintaining simulation accu-

racy.

2. Related Work

In order to address non-linear issue, Muller et al. pro-

posed Corotated FEM [1] [2] to linearize the problem

and made stiffness matrix precomputed, overcame a ma-

jor obstacle in Finite Element computing used for real-

time simulation. As corotated FEM proposed and used,

handling rotations is an issue affecting simulation speed

and error. There are robust ways to handle rotations,

such as [3] and [4]. There are also other ways to acceler-

ate FEM computing. For example, some researchers use

GPU [5][6] for parallel computing to realize fast compu-

tation.

Solving large-dimension matrix equations is also af-

fecting efficiency in FEM computing. Thus, in order to

get low dimensional DOFs to reduce the problem size,

model reduction has been used to reduce the complexity

of a model while retaining its essential features. Bar-

bic and James [7] utilized the modal derivative technique

to determine an invariant subspace U when simulating

nonlinear elasticity. In[8], a rapid method for computing

linear subspaces was introduced, using Krylov iteration

to estimate the subspace spanned by the eigenvectors.

Position Based Dynamics (PBD) [9] [10] has been pop-

ular in recent years since its robustness and easy imple-

mentation. Its high performance allows its potential ap-

plications in computer games and other interactive en-

vironments. Multiple studies used PBD to achieve ro-

bust and rapid results. Rigid body simulation in real-

time is realized using PBD [11][12], yielding fast and

stable simulations and enabling real-time interactions in

games and VR environments. In [13], authors combined a

continuum-based formulation with a position-based solver

and achieved complex physics effects like anisotropy or

elastoplasticity. Later, based on PBD, a more accurate

and efficient method is proposed compared to the PBD,

named XPBD [14]. XPBD extends PBD constraints to

have a direct correspondence to well-defined elastic and

dissipation energy potentials and introduces the concept

of a total Lagrange multiplier to PBD, allowing for time

step and iteration count independent constraint solving.

3. Implementation

3.1 Dynamic Equation

We first introduce how to develop a dynamic equa-

tion for the full body and then decompose it to a group

scale. The general. Newton’s second law describes dy-

namic equilibrium equation for the body, and it’s written

as:

Mẍ+Cẋ+ F(x− x0) = f (1)

where ẋ and ẍ are first and second order differentiation

of x. M and C are mass matrix and damping matrix.

As Euler implicit method allows for larger time steps

without the risk of instability, we use this method to

discretize Equation (2) and (3).

xi+1 = xi +∆tvi+1 (2)

Mvi+1 = Mvi+∆t(−Cvi+1−F(xi+1−x0)+ f i+1) (3)

In linear elasticity, we approximate that

F(x− x0) = K(x− x0) (4)

where K is the stiffness matrix of the system. To make

the stiffness matrix precomputed, we adopted corotated

method [1] to simulate non-linear deformation. In this

study, as we use local coordinates for each group rather

than global coordinates, Equation (4) is written as:

K(x− x0) = RK(R−1(x− xcm)− (x0 − x0,cm)) (5)

where x0,cm is the initial center of mass and xcm is cen-

ter of mass in run-time calculations.Use C′ = ∆tC to

simplify. We also use predicted position x̄i+1 to repre-

sent positions adding external force (Equation (6)), and

our iterative position constraints will correct it.

(M+C′)x̄i+1 = (M+C′)xi +∆tMvi +∆t2f i+1
ext (6)

Finally, we can give the dynamic equation applying coro-

tated FEM for each group.

(Mj +C
′
j)xj

i+1 = (Mj +C
′
j)x̄

i+1
j −∆t2Rj

i+1Kj

(Rj
i+1T (xj

i+1 − xj
i+1
cm )− (xj

0 − xj
0
cm))

+∆t2fc
i+1
j

(7)

Here, fc
i+1
j means constraint force between groups,

and j represents group number. To implement this equa-

tion, we need to extract rotation from positions of ver-

tices and take reference from shape matching method [4].

Then, we exert one rotation for all vertices in that group.

In order to keep the integrity of the model as we divide

it into several groups, constraints that keep the nodes

shared by the adjacent groups in the same position are

added.

xi+1
G1 (common) = xi+1

G2 (common) (8)

In Equation (7), we use Mj,cmxi+1
j,cm to calculate group

center of mass, where Mj,cm is the mass distribution ma-

trix of each group. Although this equation may be solved

as it is, the following substitutions are made to reduce the



error. We solve ∆xi+1 = xi+1 − x̄i+1 rather than xi+1.

Then we formed a matrix equation Ai+1
j ∆xi+1

j = bi+1
j .

In both Ai+1
j and bi+1

j , some variables need to be cal-

culated at every time step. In order to accelerate cal-

culation, we use a property of orthogonal matrix Ri+1
j

(R−1 = RT )). In addition, we use Rayleigh Damping

C = αM + βK to formulate damping matrix C and set

β = 0 to to move the time variant rotation matrix Ri+1
j .

Then, the equation to be solved becomes(
I +

(
Mj + C

′
j

)−1
∆t

2
Kj −

(
Mj + C

′
j

)−1
∆t

2
KjMj,cm

)
∆y

i+1
j

= ∆t
2
(
Mj + C

′
j

)−1
Kj

(
x
0
j − x

0
j,cm

)
−

(
Mj + C

′
j

)−1
∆t

2
KjR

i+1
j

T
x̄
i+1
j

+
(
Mj + C

′
j

)−1
∆t

2
KjR

i+1T

j x̄
i+1
j Mj,cm

+ ∆t
2
R

i+1
j

−1
fc(k, j)

(9)

∆x
i+1
j = R

i+1
j ∆y

i+1
j (10)

This is the final dynamic equation to solve in our sim-

ulation.

3.2 Iterative Method

In the previous section, we derived a dynamic equation

to be solved. However, it is difficult to solve the equation

and satisfy the constraints directly. Thus, we came up

with an iterative method and transformed the position

constraints into constraint forces between groups. We

use the difference between the average position of the

common points of two adjacent groups and the current

position to calculate the constraint force. At first, we

set fc(j,k+ 1) = 0 and solve for the ∆xi+1,k+1
j . Then,

use it to calculate a new constraint force with Equation

(12). After iterations, we correct the current position and

velocity and then enter the next time step. Here bi+1
j

′

represents other terms excluded for bind force. Here we

introduce k, bind force coefficient, which determines the

value of bind force.

Ai+1
j ∆xi+1,n+1

j = bi+1
j

′ + fc(j,n), j = 1, ...,m (11)

fc(j,n+ 1) = fc(j,n)

+ k(x̄i+1
j +∆xi+1,n+1

j − x̄i+1
l −∆xi+1,n+1

l )

(j = 1, ...,m)

(12)

4. Results

We evaluated our method concerning speed, accuracy,

and stability. For speed, we used a cantilever beam di-

vided into different numbers of elements and then com-

pared the average calculation time for each timestep.

According to Figure 1, for the corotated FEM (1 group),

the computational time exhibits a noticeable increase as

the number of tetras grows. In contrast, dividing the

computation into multiple groups (2, 3, 4, and 8 groups)

consistently reduces the computational time across all

図 1: Calculation Speed by Different Number of

Tetras and Groups

図 2: Comparison Accuracy Between Corotated

FEM (Top) and Our Method (Middle, 2 Groups

and Bottom, 4 Groups)

tetras counts. This shows that the proposed method is

effective in reducing matrix dimensions and accelerating

calculation.

As for accuracy, we compared the beam divided into

4 groups and 2 groups, as well as the corotated FEM.

We set the model and initial condition the same, with

each vertex added 5 times its gravity. After the beam

becomes balanced, we compared the final results of each

beam. As shown in Figure 2, we can observe that there

is no significant difference between corotated FEM and

our method.

As for stability, we added 200 times the cube’s gravity

and observed its deformation. Upon application of the

vertical force, the object undergoes significant distortion,

elongating, and bending. As the force is released, the



図 3: After adding a huge force, the cube can re-

cover to its initial state.

object begins to return to its original form. This process

shows that the cube can recover to a stable state under

huge force.

5. Conclusion

In this study, we proposed a method to accelerate the

FEM method for soft body simulation by dividing the

model into groups and using PBD to control its shape

integrity. The preliminary results show that our method

can significantly reduce computation cost compared with

the corotated FEM. In the meantime, our method shows

no significant discrepancies were observed between the

corotated FEM and the proposed method, suggesting

that our method does not sacrifice accuracy for speed.

In addition, the object could withstand and recover from

substantial forces using our method, indicating that the

method is robust and maintains stability under extreme

conditions.

6. Limitation

One limitation of our method is that the constraint

forces between groups introduce instability. If the bind

force coefficient is set too large, the simulation will crash.

We need to fine-tune the coefficient to realize a stable

result. In the future, we will aim at building more robust

constraints to realize stable simulation and apply it to

haptic rendering algorithm.
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